Bibliography For William Gropp

[1] mat04:report

[5] alma03:mpibgl

[7] alma05:mpi-impl:bgl

[8] ala04:mpi:bgl
George Almási, Charles Archer, José G. Casta nos, John Gunnels, Chris

[9] agkks-sc99-fun3d

[12] bagh10

[13] baik02:cluster-middleware
[14] bak03:cluster01

[15] conf/icpp/BalajiBPTG07

[16] conf/ipps/BalajiBBSTG07
Pavan Balaji, Darius Buntinas, S. Balay, B. Smith, Rajeev Thakur, and William Gropp. Nonuniformly communicating noncontiguous data: A case study with PETSc and MPI. In *IPDPS* [3], pages 1–10.

[17] balaji-mpi-mill-11

[18] balaji-pmi-10

[19] 1612220

[20] DBLP:conf/pvm/BalajiBGKT08
Pavan Balaji, Darius Buntinas, David Goodell, William Gropp, and Rajeev Thakur. Toward efficient support for multithreaded MPI communication. In Lastovetsky et al. [356], pages 120–129.

[21] PavanBalaji02012010
[22] balaji-mpidata-10

[23] DBLP:conf/pvm/BalajiCGTL08

[24] DBLP:journals/ife/BalajiCTGL09

[25] Balay97

[26] petsc-user-ref

[27] petsc-cse15

[28] petsc-user-ref-3-0

[29] PETScUsers

[31] alice-siamoo-98-preprint

[32] bgms00:petsc-chapt

[33] bala03:sourcebook:pdesoft

[34] barrymangroppsaltz89

[35] bdec-report

[36] besa89

[37] Berryman:1990:KMP
[38] DBLP:conf/sc/BhateleJGK11

[39] conf/ipps/BhateleJGWGK11

[40] doi:10.1137/15M1026341

[41] Bienz:2018:IPM:3236367.3236368

[42] BIENZ2019166

[43] bla03:cray-eval

[44] bw-in-vetter13

[45] boleygropp81
Bolstad:1979:NAP

applmath08

bunt05:mpi-impl

buntinas05:common_comm_subsys

data_transfer2006

nemesis-design-tr

buntinas06:nemesis

[53] buntinas06:nemesis:shm

[54] bush00:petsc

[55] bus01:petsc-perf

[56] bgl00:mpd-short

[57] bgl00:mpi-mpd-tr

[58] bg100:mpd

[59] bg100:mpd-tr
[60] butlergropplusk93

[61] byna08:_hidin_i_o laten_with

[62] byna08:_paral_i_o_prefet_using

[63] byna03:mpi-impl

[64] byna06:mpi:datatypes

[65] XCCai_WDGropp_DEKeyes_MDTidriri_1994a

[66] caigroppkeyes91

[67] caigropp97
X-C Cai, William D. Gropp, David E. Keyes, R. G. Melvin, and D. P. Young. Parallel Newton-Krylov-Schwarz algorithms for the transonic full

[68] caigroppkeyestidriri94

[70] Cai:1992:CRE

[71] Cai:1994:CSD

[73] CalhounOlsonSnirGropp:2015:FR_AMG

[74] conf/hpdc/CalhounSOG17
[75] FranckCappello11012009

[76] cappello14-resilience

[78] carns2012case

[79] 10.1109/SC.Companion.2012.19

[80] chan08-bg-fft

[81] chan02:scalable-log

[82] chan08:slog2
[83] **PPoPP2006**

[84] **cgk91:dd-transport**

[85] **DBLP:conf/iwomp/2011**

[86] **chen2012decoupled**

[87] **conf/trustcom/ChenCYSTG16**

[88] **conf/ipps/ChenSTRG11**

[89] **chin03a:mpi-io**

[90] **ching-io-02**
[91] ching-io-03

[92] ching04:paralle-io

[93] DBLP:journals/ijhpcn/ChingCLRG04

[94] pvmmpi99-totalview

[95] pvmmpi99-totalview-tr

[97] journals/pc/DangSG17

[98] dgw02:wan-ftp

[99] dg02:wan-ftp

[100] CPE:CPE3758

[101] contextid-12

[103] Dongarra01022011

[104] crpchandbook
[105] dozza-threads-10

[106] gropp93

[109] evans03:network

[110] EVA03.soft

[111] falz05:mpi-impl
[12] falz07:mpi-debug
Christopher Falzone, Anthony Chan, Ewing Lusk, and William Gropp.
A portable method for finding user errors in the usage of MPI collective
operations. *International Journal of High Performance Computing

[13] 6702642
Kun Feng, Yanlong Yin, Chao Chen, Hassan Eslami, Xian-He Sun, Yong
Chen, Rajeev Thakur, and William Gropp. Runtime system design of
decoupled execution paradigm for data-intensive high-end computing. In
Cluster Computing (CLUSTER), 2013 IEEE International Conference on,
pages 1, 2013.

[14] nes06
Phillip Finck, David Keyes, and Rick Stevens. Workshop on sim-
ulation and modeling for advanced nuclear energy systems, August
2006. CoAuthored Section 3.4, Software Tools and Environments,

[15] forsman95
K. Forsman, W. Gropp, L. Kettunen, D. Levine, and J. Salonen. Solution
of dense systems of linear equations arising from integral equation
formulations. *IEEE Antennas and Propagation Magazine*, pages 96–100,
December 1995.

[16] forsman95rpt
K. Forsman, W. Gropp, L. Kettunen, D. Levine, and J. Salonen. Solution
of dense systems of linear equations arising from integral equation formu-
Science Division, Argonne National Laboratory, October 1995.

[17] ppsc95•225
Kimmo Forsman, William Gropp, Lauri Kettunen, and David Levine.
Computational electromagnetics and parallel dense matrix computations.
In Bailey, David H., Bjørstad, Petter E., Gilbert, John E., Mascagni,
Michael V., Schreiber, Robert S., Simon, Horst D., Torczon, Virginia

[18] mpi-1-standard
Message Passing Interface Forum. MPI: A message passing interface stan-

[19] mpi-nexus-pc
I. Foster, J. Geisler, W. Gropp, N. Karonis, E. Lusk, G. Thiruvathukal,

[120] ppsc91*307

[121] FGS

[122] of03:sourcebook:pgmmodels

[123] icpp90-3*35

[124] alice-infrastructure

[125] frei99:num-soft

[126] gahvari10

[127] conf/ics/GahvariBSYJG11

David Goodell, Pavan Balaji, Darius Buntinas, Gabor Dozsa, William

[135] conf/pvm/GoodellGZT11

[136] DBLP:journals/cacm/GopalakrishnanKSTGLSSB11

[137] gottrath06:mpi:debugging

[138] Greengard88

[139] ppsc87*213

[140] greengardgropp90

[141] Gropp86a
[142] Gropp88c

[143] Gropp88a

W. Gropp and E. Lusk. A high-performance MPI implementation on a
1526, January 1997.

W. Gropp and E. Lusk. Sowing MPICH: A case study in the dissemina-
tion of a portable environment for parallel scientific computing. The In-
ternational Journal of Supercomputer Applications and High Performance

W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-performance,
portable implementation of the MPI message passing interface standard.

[153] GroppMore97
W. Gropp and Jorge Morè. Optimization environments and the NEOS
server. In M. D. Buhmann and A. Iserles, editors, Approximation Theory
and Optimization: Tributes to M. J. D. Powell, pages 167–182. Cambridge

W. Gropp and B. Smith. Scalable, extensible, and portable numerical
libraries. In Proceedings of the Scalable Parallel Libraries Conference, Oc-
tober 6–8, 1993, Mississippi State, Mississippi, pages 87–93, 1109 Spring
Street, Suite 300, Silver Spring, MD 20910, USA, 1994. IEEE Computer
Society Press.

[155] 6636318

[156] GROPP84A
W. D. Gropp. Local uniform mesh refinement on loosely-coupled parallel
processors. Technical Report YALEU/DCS/RR-352, Yale University,
December 1984.

[157] GROPP84
W. D. Gropp. Local uniform mesh refinement with moving grids. Technical
Report YALEU/DCS/RR-313, Yale University, April 1984.

[158] GROPP85
Research Office Workshop on Microcomputers in Scientific Computing,
1985.

[160] gkks99:perf-bounds

[161] gkks:cfd-hiperf-tr

[162] gkks:cfd-perf

[163] gkks:cfd-scal-perf00

[164] gkks:cfd-hiperf-art

[165] gkks:cfd-perf-proc

[166] GKS00
[167] WDGGropp_DEKeyes_1989b

[168] WDGGropp_DEKeyes_1990a

[169] WDGGropp_DEKeyes_1991a

[170] WDGGropp_DEKeyes_1992c

[171] WDGGropp_DEKeyes_1992a

[172] siamssc-92/128:gwd

[173] WDGGropp_DEKeyes_JSMounts_1994a

[174] WDGGropp_DEKeyes_MDTidriri_1995a

[184] GroppWilli1995b

[185] gropp-siamoo-98

[186] gropp00:petsc-lessons

[187] DBLP:conf/cluster/Gropp01

[188] DBLP:conf/pvm/Gropp01

[189] gropp01:mpi-misc

[190] gropp02:mpi-generic

[191] DBLP:conf/pvm/Gropp02

[192] groo3:sourcebook:poisson
William Gropp. The 2-d Poisson problem. In Jack Dongarra, Ian Foster,

[193] **gro03:mpitrends**

[194] **gro03:sourcebook:**

[195] **gro03:beowulf:use**

[196] **qcdoc03:trends**

[197] **grop04:par-soft**

[198] **gro04:mpi-pgmimg**

[199] **grop05:progmodels**
[200] Grop07GridSummary

[201] 1612212

[203] mpi-success-12

[204] xpacc-cse15

[205] fpmpi

[206] Grop07Grid

[207] UsingAdvancedMPI

[208] conf/pvm/GroppHTT11
William Gropp, Torsten Hoefler, Rajeev Thakur, and Jesper Larsson Träff. Performance expectations and guidelines for MPI derived datatypes.

[210] gkmt-nks00

[211] gkmt-nks-98-preprint

[212] gkmt-nks-98

[213] gropp06:_paral_tools_envir

[214] GroppWilli1992a

[215] pvmmpi99-mpptest-tr
[216] gro03:beowulf:mpi2

[217] gro03:beowulf:mpi1

[218] gropp04:mpi-fault

[220] gropp-lusk-skjellum:using-mpi2nd

[221] UsingMPI3rd

[222] beowulf-linux2nd

[223] gropp-swider-lusk99

[224] gropp-lusk-thakur:usingmpi2

[225] DBLP:conf/pvm/GroppL02
William Gropp and Ewing L. Lusk. MPI on the grid. In Dieter Kranzlmüller, Peter Kacsuk, Jack Dongarra, and Jens Volkert, editors, Red-

[226] DBLP:conf/pvm/GroppL03

[227] sc13-specialissue

[229] gro04a:pario

[230] gro04:par-io;tr

[231] gro88:par-cfd

[232] WilliamGropp11012009

[233] gro05:mpi-rma-impl
William Gropp and Rajeev Thakur. An evaluation of implementation

[234] pmodels-mpi:15

[235] Gropp2019-EuroMPI17

[237] gropp-thesis

[238] gropp83

[239] groppLUM87

[242] gropp-nla87
[243] groppadapt88

[244] gropp-dyngrid89

[245] gropp91

[247] bfort-manual

[248] doctext-manual

[249] tohtml-manual

[250] groppdebug97

[251] gropp-mppm97
[252] groppetsc97

[253] groppmaui97

[254] gro:mpi-datatypes:pvmmpi00

[255] gro00:mpi-impl

[256] gr01:mpi-lessons

[257] gro02:mpi-impl:generic

[258] gro04:par-issues

[259] DBLP:conf/pvm/Gropp04
William D. Gropp. MPI and high productivity programming. In Dieter Kranzlmüller, Peter Kacsuk, and Jack Dongarra, editors, *Recent Ad-

[260] gro04-bk:par-issues

[261] DBLP:conf/pvm/Gropp08
William D. Gropp. MPI and hybrid programming models for petascale computing. In Lastovetsky et al. [356], pages 6–7.

[262] 1608633

[263] conf/ics/Gropp11

[266] GROPP201998

[267] groppfoulser89

[268] Grop:BGMS:07
William D. Gropp, Wolfgang Frings, Marc-André Hermanns, Ed Jedlicka,

[269] **ghs-pm-siamcse11**

[271] **groppkaper94**

[272] **groppkaper96**

[273] **gropp00performance**

[274] **gkks00:fun3d**

[275] **gropp06:radtransport**
[276] groppkeyes89

[277] groppkeyes90

[280] ppsc89*295

[281] groppkeyes90b

[282] groppkeyes91a

[283] groppkeyes91

[284] groppkeyes-asym92
[285] groppkeyes92

[286] groppkeyesmcinnestidriri97

[287] DBLP:conf/pvm/GroppKRTT08

[288] gropp06:ppsurvey

[289] groppluskl94

[290] mpich-install

[291] mpich-user

[292] groppluskpvmmpi97

[293] groppluskpvmmpi97
[294] pvmpi99-mpptest
William D. Gropp and Ewing Lusk. Reproducible measurements of MPI
performance characteristics. In Jack Dongarra, Emilio Luque, and Tomás
Margalef, editors, Recent Advances in Parallel Virtual Machine and Mes-
sage Passing Interface, volume 1697 of Lecture Notes in Computer Sci-
ence, pages 11–18. Springer Verlag, 1999. 6th European PVM/MPI Users’
Group Meeting, Barcelona, Spain, September 1999.

[295] gro02:mpi-pvm
William D. Gropp and Ewing Lusk. Goals guiding design: PVM and
MPI. In William Gropp, Rob Pennington, Dan Reed, Mark Baker, Maxine
Brown, and Rajkumar Buyya, editors, Proceedings of IEEE Cluster, pages

[296] gro04:mpi
William D. Gropp and Ewing Lusk. Fault tolerance in MPI pro-
grams. International Journal of High Performance Computer Applica-

[297] gropluskpieper94
William D. Gropp, Ewing Lusk, and Steven Pieper. Users Guide for the
ANL IBM SP1. Mathematics and Computer Science Division, Argonne

[298] gropluskppm95
William D. Gropp and Ewing L. Lusk. A taxonomy of programming
models for symmetric multiprocessors and SMP clusters. In W. K. Giloi,
S. Jahnichen, and B. D. Shriver, editors, Programming Models for Mas-
sively Parallel Computers, pages 2–7. IEEE Computer Society Press, Oc-
tober 1995.

[299] GroppMcInnesSmith95
William D. Gropp, Lois Curfman McInnes, and Barry Smith. Scalable li-
braries for solving systems of nonlinear equations and unconstrained min-
Conference: October 12–14, 1994, Mississippi State University, Missis-
sippi, pages 60–67, 1109 Spring Street, Suite 300, Silver Spring, MD 20910,

[300] GroppWilli1995a
William D. Gropp, Lois Curfman McInnes, and Barry F. Smith. Using
the scalable nonlinear equations solvers package. Technical Memorandum

[301] groppmore97rpt
William D. Gropp and Jorge Moré. Optimization environments and
the NEOS server. Technical Report ANL/MCS-P654-0397, Mathematics
and Computer Science Division, Argonne National Laboratory, March

[302] groppschultz89

[303] groppschultz90

[304] SLES-manual

[305] KSP-manual

[306] Chameleon-manual

[307] groppsmith95

[310] groppsmith90
[311] grop06:mpi:threads

[312] DBLP:conf/pvm/GroppT07

[313] guo2013applications

[314] GuoGropp10

[315] Guo01022014

[316] Guo14072015

[317] gropp-hedstrom83

[318] herbin87

[319] mpi-mpi-hybrid-programming

[325] DBLP:conf/sc/2014pmbs

[326] jia04:mpi-impl

[327] jiang04:mpi-impl

[328] jia04:mpi-impl;ib

[329] kale2011weighted

[330] kale-mpi-10

[331] conf/iwomp/KaleG15

[332] *conf/pvm*KaleRG14

[333] *ksfglb00:mpi-collective*

[334] *kar02:mpi-impl*

[335] *kdSFGLB00:mpi-ngi*

[336] *kaushik08-tensor*

[337] *kend06:pde*

[338] *kettunenforsman93*

[339] kettunen94

[340] kettunenforsmanlevinegropp94

[341] KEYES85

[342] DEKeyes_WDGropp_1989a

[343] DEKeyes_WDGropp_1991a

[344] DEKeyes_WDGropp_AEcoder_1989a

[345] scalesv1-03

[346] scalesv2-04
David Keyes, Philip Colella, Thom H. Dunning, and William D. Gropp. A

[347] \textit{nsf-soft10}

[348] \textit{Keyes:1987:CDD}

[349] \textit{Keyes:1989:DDL}

[350] \textit{keyesgropp90}

[351] \textit{Keyes:1990:DDT}

[352] \textit{keyesgropp92}

[353] \textit{Keyes01022013}
David E Keyes, Lois C McInnes, Carol Woodward, William Gropp, Eric Myra, Michael Pernice, John Bell, Jed Brown, Alain Clo, Jeffrey Connors, Emil Constantinescu, Don Estep, Kate Evans, Charbel Farhat, Amar Hakim, Glenn Hammond, Glen Hansen, Judith Hill, Tobin Isaac, Xiangmin Jiao, Kirk Jordan, Dinesh Kaushik, Efthimios Kaxiras, Alice Koniges, Kihwan Lee, Aaron Lott, Qiming Lu, John Magerlein, Reed Maxwell, Michael McCourt, Miriam Mehl, Roger Pawlowski, Amanda P Randles, Daniel Reynolds, Beatrice Rivi`ere, Ulrich Rüde, Tim Scheibe, John Shadid, Brendan Sheehan, Mark Shephard, Andrew Siegel, Barry

[354] KeyesMcInnesWoodwardEtAl12

[357] DBLP:conf/pvm/LathamGRT07

[358] LevGroForKet99:petsc-coral

[359] li03:pmemcd
[360] liu03:mpich2-infiniband

[361] liu03:mpich2-infiniband-ipdps

[362] lusk03:beowulf:programming

[363] conf/hpdc/LuuWGRCHPBY15

[364] mellor2010teaching

[365] mpi-2-standard

[366] ppsc89*386

[367] NAP21886
National Academies of Sciences, Engineering, and Medicine. Future Directions for NSF Advanced Computing Infrastructure to Support U.S. Science

[368] NAP25199

[369] NAP18972

[372] ong-lusk-gropp:SUT

[373] ong-lusk-gropp:SUT-tr

[374] conf/pvm/PenaCDBTG13

[375] DBLP:conf/pvm/PervezSKPTG07
Salman Pervez, Ganesh Gopalakrishnan, Robert M. Kirby, Robert Palmer, Rajeev Thakur, and William Gropp. Practical model-checking
method for verifying correctness of MPI programs. In Cappello et al. [77], pages 344–353.

[376] gopal10

[377] pervez06:formal:mpi

[378] conf/pvm/PrabhuG15

[380] conf/ipps/RandlesKHGK13

[381] conf/pvm/RashtiGBAG11

[382] ros03:mpidatatype

[383] ross04:mpi-impl:tr

[384] 1612222

[385] ross:mpi-io:atomic

[386] rfkgst00:mpichg-qos-sc

[387] rfkgst00:mpichg-qos

[388] sack-exascale-10

[407] thakur03:mpi-coll

[408] thak03:sourcebook:mpiio

[409] conf/aPcsac/ThakurG07

[410] DBLP:conf/pvm/ThakurG07
Rajeev Thakur and William Gropp. Test suite for evaluating performance of MPI implementations that support MPI_THREAD_MULTIPLE. In Cappello et al. [77], pages 46–55.

[411] thakur09:MPIthreads

[412] ThakurGroLus96

[413] thakur:abstract-tr

[414] thakur:evaluation
[415] thakur:evaluation-tr

[416] ROMIOUsers

[417] thakurgroplusk-datasieving98

[418] thakurgroplusk-mpiio

[419] thakurfrontiers99

[420] thak99b

[421] tgl02:mpiio

[422] ree04:mpi-io

[423] tha04:mpi-impl
Rajeev Thakur, William Gropp, and Brian Toonen. Minimizing synchronization overhead in the implementation of MPI one-sided communication.

[424] **thak04:**mpi-impl:rma

[425] **thak05:**mpi-impl:rma

[426] **thak05:**mpi-impl:rma:preprint

[427] **thakur:**astrophysics

[428] **thakurluskgropp-io97**

[429] **thakurluskgropp-datatype98:**sc98

[430] **thakurluskgropp-datatype98**
[431] thakurluskgropp98

[432] thak04:mpi-impl:coll

[433] thak05:mpi-impl:coll

[434] 1679706

[435] toaks01:bnr-design

[436] DBLP:conf/pvm/TraffGT07
Jesper Larsson Träff, William Gropp, and Rajeev Thakur. Self-consistent MPI performance requirements. In Cappello et al. [77], pages 36–45.

[437] traff2010

[438] DBLP:conf/pvm/TraffRSBTG08

[439] JesperLarssonTräff02012010
Jesper Larsson Träff, Andreas Ripke, Christian Siebert, Pavan Balaji, Rajeev Thakur, and William Gropp. A pipelined algorithm for large,

[440] DBLP:conf/pvm/VakkalankaDGKTG08
Sarvani S. Vakkalanka, Michael Delisi, Ganesh Gopalakrishnan, Robert M. Kirby, Rajeev Thakur, and William Gropp. Implementing efficient dynamic formal verification methods for MPI programs. In Lastovetsky et al. [356], pages 248–256.

[441] vin01:mpi-impl

[442] deflatedgmress13

[443] wagg01:linux-petsc

[444] SOO-CD-ROM*50

[446] 1598125

[447] zaki-lusk-gropp-swider99
Omer Zaki, Ewing Lusk, William Gropp, and Deborah Swider. Toward

[448] zaki-lusk-gropp-swider99-techrpt

[449] 6808175

[450] conf/ccgrid/ZhaoBG15

[451] conf/ispdc/ZhaoBG16

[452] 6844416

[453] zhaol3-am-mpi

[454] adaptive-rma-12

[455] 1612262

[456] zima:hpp104