This IMRT guideline applies to other cancers not listed below for programs that manage all cancer sites.

Refer to applicable site-specific guidelines for the management of primary malignancies. Applicable site-specific guidelines may include all or some of the sites below, depending on the specific program.

- Anal Cancer
- Bone Metastases
- Breast Cancer
- Cervical Cancer
- CNS Cancer
- Colon Cancer
- Rectal Cancer
- Endometrial Cancer
- Gastric Cancers
- Head and Neck Cancer
- Lung - Non Small Cell
- Lung - Small Cell Lung Cancer
- Lymphoma - Hodgkin’s Lymphoma
- Lymphoma - Non Hodgkin’s Lymphoma
- Pancreas Cancer
- Prostate Cancers

For metastasis to the brain, regardless of primary site, refer to the NIA clinical guideline for Central Nervous System (CNS).

For metastasis to bone, refer to the NIA clinical guideline for Bone Metastases.

For all other metastases, refer to the NIA clinical guideline for metastatic disease.

INTRODUCTION:

Intensity-Modulated Radiation Therapy (IMRT) is a computer-based method of planning for, and delivery of, generally narrow, patient-specific, spatially and often temporally modulated beams of radiation to solid tumors within a patient. IMRT planning and delivery uses an approach for obtaining the highly conformal dose distributions needed to irradiate complex targets positioned near, or invaginated by, sensitive normal tissues, thus improving the therapeutic ratios. IMRT delivers a more precise radiation dose to the tumor while sparing the surrounding normal tissues by using non-uniform radiation beam intensities that are determined by various computer-based optimization techniques. The computer-based optimization process is referred to as “inverse planning.” Inverse planning develops a dose distribution based on the input of specific dose constraints for the Planned Treatment Volume (PTV) and nearby clinical structures and is the beginning of the IMRT treatment planning process. The Gross Tumor Volume (GTV), the PTV and surrounding normal tissues must be identified by a contouring procedure and the optimization must sample the dose with a grid spacing of 1 cm or less. Traditional “field-in-field technique,”
which is neither MLC nor compensator-based, is not considered IMRT but rather external beam therapy.

The decision process for using IMRT requires an understanding of accepted practices that take into account the risks and benefits of such therapy compared to conventional treatment techniques. While IMRT technology may empirically offer advances over conventional or 3-D conformal radiation, a comprehensive understanding of all consequences is required before applying this technology. IMRT is not a replacement therapy for conventional radiation therapy methods.

MEDICALLY NECESSARY INDICATIONS FOR INTENSITY-MODULATED RADIATION THERAPY (IMRT):

- Anal cancer
- Esophageal cancer
- Prostate cancer
- Trachea cancer
- Thyroid cancer
- Head and neck cancer
- CNS lesions with close proximity to the optic nerve, lens, retina, optic chiasm, cochlea or brain stem. (See NIA CNS Clinical Guidelines)
- Primary Bone and Articular Cartilage cancer of the skull and face, vertebral column, sacrum, and coccyx
- Treatment for repeat irradiation of a field that has received prior irradiation.
- Pediatric patients less than 21 years with a radiosensitive tumor

CONDITIONS REQUIRING ADDITIONAL CLINICAL REVIEW

IMRT is not indicated as a standard treatment option and should not be used routinely for the delivery of radiation therapy for all other conditions including, but not limited to:

- Breast cancer
- Colon cancer
- Gastric cancer
- Gynecological cancer
- Lung cancer
- Lymphoma
- Pancreas cancer
- Pelvic bone cancer
- Primary or secondary liver cancer
- Rectal cancer
- Secondary bone and articular cartilage cancer
- Soft tissue sarcoma
- All other neoplasms not listed above as medically necessary

IMRT may be indicated for the above conditions if all of the following are present:
IMRT is strictly defined by the utilization of inverse planning modulation techniques. IMRT may be appropriate for limited circumstances in which radiation therapy is indicated and 3D conformal radiation therapy (3D-CRT) techniques cannot adequately deliver the radiation prescription without exceeding normal tissue radiation tolerance, the delivery is anticipated to contribute to potential late toxicity or tumor volume dose heterogeneity is such that unacceptable hot or cold spots are created. If IMRT is utilized, techniques to account for respiratory motion should be performed when appropriate.

Clinical rationale and documentation for performing IMRT rather than 2D or 3D-CRT treatment planning and delivery will need to:

- Demonstrate how 3D-CRT isodose planning cannot produce a satisfactory treatment plan (as stated above) via the use of patient specific dose volume histograms and isodose plans. 3D-CRT techniques such as step-and-shoot or field-in-field should be considered for the comparison.
- Confirm the IMRT requested will be inversely planned (forward plans or 'field-in-field' plans are not considered IMRT).
- Provide tissue constraints for both the target and affected critical structures.
REFERENCES

Nutting, C.M., Convery, D.J., Cosgrove, V.P., et al. (2001). Improvements in target coverage and reduced spinal cord irradiation using intensity-modulated radiotherapy in patients

Intensity-modulated radiation therapy. Steve Webb. Professor of Radiological Physics, Head, Joint Department of Physics. The work of the ICR and RMNHST in intensity-modulated radiotherapy is supported by the Cancer Research Campaign (CRC), the Engineering and Physical Sciences Research Council (EPSRC), Elekta Oncology Systems, Varian, the NOMOS Corporation, the HELAX AB Corporation, and I gratefully acknowledge many insights into IMRT that have resulted from collaborations with these companies. Image-Guided, Intensity-Modulated Radiation Therapy (IG-IMRT) to the Prostate. Share. Print. This information will help you prepare for image-guided, intensity-modulated radiation therapy (IG-IMRT) to the prostate, including what to expect before, during, and after your treatment. You will also learn about side effects and how to care for yourself during your treatment. We suggest you read through this resource at least once before you start radiation therapy, and then use it as a reference in the days leading up to your treatments to help you prepare. Bring it with you for your simulation app To review our experience and evaluate treatment planning using intensity-modulated radiotherapy (IMRT) and helical tomotherapy (HT) for the treatment of elderly patients with bladder cancer. From November 2006 through November 2009, we enrolled 19 elderly patients with histologically confirmed bladder cancer, 9 in the IMRT and 10 in the HT group. The patients received 64.8 Gy to the bladder with or without concurrent chemotherapy. IMRT and HT provide good LRPFS with tolerable toxicity for elderly patients with invasive bladder cancer. IMRT and HT dosimetry and organ sparing capability were superior to that of 2DRT, and HT provides better sparing ability than IMRT. Intensity modulated radiation therapy. Comments.