Table of Contents

Preface
Lei Xi and Tatiana V. Serebrovskaya

Foreword
John B. West

Historical Overview of Intermittent Hypoxia Research
Tatiana V. Serebrovskaya and Lei Xi

Section 1 Intermittent Hypoxia and Cardiovascular System

Chapter 1 Contrasting Effects of Intermittent Hypoxia on Myocardial Ischemic Tolerance
Elise Belaidi, Amandine Ramond, Marie Joyeux-Faure, Patrick Levy, Christophe Ribuot, and Diane Godin-Ribuot

Chapter 2 Effects of Intermittent versus Chronic Hypoxia on Myocardial Ischemic Tolerance
Michele Samaja, Arsenio Veicsteinas, and Giuseppina Milano

Chapter 3 Intermittent Hypoxia-Induced Cardioprotection via NOS-Dependent Signaling Mechanism
Lei Xi and Demet Tekin

Chapter 4 Intermittent Hypoxia-Induced Cardio- and Vasoprotection: Role of NO Stores
Eugenia B. Manukhina, Anatoly F. Vanin, Igor Yu. Malyshev, Robert T. Mallet, and H. Fred Downey

Chapter 5 Intermittent Hypoxia in Resistance of Cardiac Membrane Structures: Role of Reactive Oxygen Species and Redox Signaling
Tatyana G. Sazontova and Yuriy V. Arkhipenko

Chapter 6 Beta-Adrenergic Signaling and ROS: Pivotal Roles in Intermittent, Normobaric Hypoxia-Induced Cardioprotection
Robert T. Mallet, Myoung-Gwi Ryou, Eugenia B. Manukhina, and H. Fred Downey

Chapter 7 Role of Protein Kinases in Chronic Intermittent Hypoxia-Induced Cardioprotection
Frantisek Kolar, Frantisek Novak, Jan Neckar, Olga Novakova, Bohuslav Ostadal, and Rene J.P. Musters

Chapter 8 Effects of Intermittent Hypoxia on VEGF Expression and Angiogenesis in Cardiac and Skeletal Muscles
Demet Tekin and Lei Xi

Chapter 9 Effects of Intermittent Hypoxia on Cardiovascular Autonomic Control: A Bioengineering Perspective
Michael C.K. Khoo

Chapter 10 Effects of Intermittent Hypoxia on Pulmonary Arterial Pressure and Right Ventricular Mass
Aidan Bradford and Ken D. O’Halloran

Section 2 Intermittent Hypoxia and Respiratory System

Chapter 11 Effects of Intermittent Hypoxia on Ventilatory Response to Hypoxia
Keisho Katayama

Chapter 12 Intermittent Hypercapnia
Mieczyslaw Pokorski and Tatiana V. Serebrovskaya

Chapter 13 Upper Airway Dysfunction Following Chronic Intermittent Hypoxia – Implications for Sleep-Disordered Breathing
Ken D. O’Halloran

Chapter 14 Effects of Intermittent Hypoxia on Pulmonary Haemodynamics
Section 3 Intermittent Hypoxia and Nervous System
Chapter 15 Hypoxic Preconditioning Protects Against Oxidative Injury in the Central Nervous System
Anya M.Y. Lin

Chapter 16 Effects of Intermittent Hypoxia on Neurogenesis in the Adult and Parkinsonian Rat
Ling-ling Zhu, Xuan Wang, Xiao-Ming Wang, and Ming Fan

Chapter 17 Neurotransmitter Synthesis during Intermittent Hypoxia: Role of ROS-Dependent Post-Translational Protein Modifications
Ganesh K. Kumar and Nanduri R. Prabhakar

Section 4 Genetic and Molecular Aspects of Intermittent Hypoxia
Chapter 18 The Role of HIF-1 and ROS in Cellular and Systemic Responses to Intermittent Hypoxia
Nanduri R. Prabhakar and Gregg L. Semenza

Chapter 19 Genetic Selection for Tolerance and Adaptation to Hypoxia
Tsering Stobdan, Jayashree Karar, and MA Qadar Pasha

Chapter 20 Mitochondrial Signaling in Formation of Body Resistance to Hypoxia
Ludmila D. Lukyanova, Alexandr V. Dudchenko, Elita L. Germanova, Tatyana A. Tsybina, Revas A. Kapaladze, Igor V. Ehrenbourg, and Elena Tkatchouk

Chapter 21 HIF1α, HIF2α, HIF3α and HIF1β mRNA Expression Changes in Different Tissues under Intermittent Hypoxic Training
Tetyana Drevitska, Victor Dosenko, and Vasily Nagibin,

Chapter 22 Hypoxia and Stem Cells
Igor Nikolsky and Tatiana V. Serebrovskaya

Section 5 Intermittent Hypoxia and Sports Training
Chapter 23 Effects of Intermittent Hypoxia Training on Peak Performance in Elite Athletes
Gregoire P. Millet, Xavier Woorons, and Belle Roels

Chapter 24 Use of Intermittent Hypoxia Training in Different Sports
Pavel Radzievski and Maria Radzievska

Chapter 25 Effects of Intermittent Hypoxia Training on Cytokine Responses to Exercise
Jong-Shyan Wang

Chapter 26 Intermittent Hypoxia Exposure and Sleep in Athletes
Chin Moi Chow, Daniel Davies, and Tahnee Kinsman

Chapter 27 Effects of Intermittent Hypoxia on Oxygen-Dependent Processes in Skeletal Muscles under Endurance Training
Iryna Mankovska, Bronislav Gavenauskas, Valentyna Nosar, Olga Gonchar, Larisa Bratus, and Natalia Kurhalyuk

Section 6 Clinical and Therapeutic Aspects of Intermittent Hypoxia
Chapter 28 Use of Intermittent Normobaric Hypoxia Trainings in Elderly People
Oleg V. Korkushko, Valery B. Shatilo, V.A. Ishchuk, and Maya I. Tourta

Chapter 29 Parkinson’s Disease and Intermittent Hypoxia Training
Evgenia E. Kolesnikova and Tatiana V. Serebrovskaya

Chapter 30 Equipment and Regimes for Intermittent Hypoxia Therapy
Oleg Bassovitch and Tatiana V. Serebrovskaya
EDITORS

Lei Xi
Department of Internal Medicine
Virginia Commonwealth University
Richmond, Virginia, USA

Tatiana V. Serebrovskaya
Bogomoletz Institute of Physiology
National Academy of Sciences
Kiev, Ukraine

CONTRIBUTORS
(Total of 74)

Yuriy V. Arkhipenko
Faculty of Fundamental Medicine
M.V. Lomonosov Moscow State University
Moscow, Russian Federation
Chapter 5

Oleg Bassovitch
Biomedtech Australia, Pty Ltd
VIC 3189
Melbourne, Australia
Chapter 30

Elise Belaidi
Laboratoire HP2, INSERM, ERI17;
Université Grenoble 1
Faculté de Médecine, IFR1
Grenoble, France
Chapter 1

Aidan Bradford
Department of Physiology and Medical Physics
Royal College of Surgeons in Ireland
St. Stephen’s Green, Dublin, Ireland
Chapter 10

Larisa Bratus
Bogomoletz Institute of Physiology
National Academy of Sciences
Kiev, Ukraine
Chapter 27

Chin Moi Chow
Delta Sleep Research Unit
Discipline of Exercise and Sport Science
The University of Sydney
Sydney, Australia
Chapter 26

Daniel Davies
Delta Sleep Research Unit
Discipline of Exercise and Sport Science
The University of Sydney
Sydney, Australia
Chapter 26

Victor Dosenko
Bogomoletz Institute of Physiology
National Academy of Sciences
Kiev, Ukraine
Chapter 21

H. Fred Downey
Department of Integrative Physiology
University of North Texas Health Science Center
Fort Worth, Texas, USA
Chapter 4, Chapter 6

Tetyana Drevitska
Bogomoletz Institute of Physiology
National Academy of Sciences
Kiev, Ukraine
Chapter 21

Alexandr V. Dudchenko
Institute of General Pathology and Pathophysiology
Russian Academy of Medical Science
Moscow, Russian Federation
Chapter 20

Igor V. Ehrenbourg
Clinical Research Laboratory
Hypoxia Medical Academy
Moscow, Russian Federation
Chapter 20

Ming Fan
Department of Brain Protection and Plasticity
Institute of Basic Medical Science
Institute of Biology and Environment Protection
Pomeranian University
Slupsk, Poland
Chapter 27

Patrick Levy
Laboratoire HP2, INSERM, ERI17;
Université Grenoble 1
Faculté de Médecine, IFR1
Grenoble, France
Chapter 1

Anya M.Y. Lin
Department of Physiology
National Yang-Ming University;
Department of Medical Research and Education
Taipei Veterans General Hospital
Taipei, Taiwan, R.O.C.
Chapter 1

Ludmila D. Lukyanova
Institute of General Pathology and
Pathophysiology
Russian Academy of Medical Science
Moscow, Russian Federation
Chapter 20

Robert T. Mallet
Department of Integrative Physiology
University of North Texas Health Science Center
Fort Worth, Texas, USA
Chapter 4, Chapter 6

Igor Yu. Malyshev
Institute of Chemical Physics;
Moscow State Medical Stomatological University
Moscow, Russian Federation
Chapter 4

Iryna Mankovska
Bogomoletz Institute of Physiology
National Academy of Sciences
Kiev, Ukraine
Chapter 27

Eugenia B. Manukhina
Institute of General Pathology and
Pathophysiology
Russian Academy of Medical Science

Moscow, Russian Federation
Chapter 4, Chapter 6

Giuseppina Milano
Centre Hospitalier Universitaire Vaudois
Lausanne, Switzerland
Chapter 2

Gregoire P. Millet
Institut des Sciences du Sport et de l'Education Physique (ISSEP)
University of Lausanne
Lausanne, Switzerland
Chapter 23

Rene J.P. Musters
Institute for Cardiovascular Research
Vrije Universiteit
Amsterdam, The Netherlands
Chapter 7

Vasilyi Nagibin
Bogomoletz Institute of Physiology
National Academy of Sciences
Kiev, Ukraine
Chapter 21

Jan Neckar
Centre for Cardiovascular Research
Institute of Physiology
Academy of Sciences of the Czech Republic
Prague, Czech Republic
Chapter 7

Igor Nikolsky
Institute of Genetic and Regenerative Medicine
Academy of Medical Sciences
Kiev, Ukraine
Chapter 22

Valentyna Nosar
Bogomoletz Institute of Physiology
National Academy of Sciences
Kiev, Ukraine
Chapter 27

Frantisek Novak
Centre for Cardiovascular Research
Academy of Sciences of the Czech Republic;
Faculty of Science, Charles University
Prague, Czech Republic
Olga Novakova
Faculty of Science, Charles University
Prague, Czech Republic
Chapter 7

Ken D. O’Halloran
UCD School of Medicine and Medical Science
Health Sciences Centre
University College Dublin
Belfield, Dublin, Ireland
Chapter 10, Chapter 13

Bohuslav Ostadal
Centre for Cardiovascular Research
Institute of Physiology
Academy of Sciences of the Czech Republic
Prague, Czech Republic
Chapter 7

Robert Pływaczewski
Institute of Tuberculosis and Lung Diseases
Warsaw, Poland
Chapter 14

Mieczyslaw Pokorski
Medical Research Center
Warsaw, Poland
Chapter 12

Nanduri R. Prabhakar
Center for Systems Biology
Department of Medicine
University of Chicago
Chicago, Illinois, USA
Chapter 17, Chapter 18

MA Qadar Pasha
Institute of Genomics and Integrative Biology
Delhi, India
Chapter 19

Maria Radzievska
Shchecin University, Shchecin, Poland;
Kiev Pedagogical University, Kiev, Ukraine
Chapter 24

Pavel Radzievski
Shchecin University, Shchecin, Poland;
Kiev Pedagogical University, Kiev, Ukraine
Chapter 18

Amandine Ramond
Laboratoire HP2, INSERM, ER17;
Faculté de Médecine, IFR1
Grenoble, France
Chapter 1

Christophe Ribuot
Laboratoire HP2, INSERM, ER17;
Faculté de Médecine, IFR1
Grenoble, France
Chapter 1

Belle Roels
ORION, Clinical Services Ltd
London, United Kingdom
Chapter 23

Myoung-Gwi Ryou
Department of Integrative Physiology
University of North Texas Health Science Center
Fort Worth, Texas, USA
Chapter 6

Michele Samaja
Department of Medicine, Surgery and Dentistry
San Paolo Hospital
University of Milan
Milan, Italy
Chapter 2

Tatyana G. Sazontova
Faculty of Fundamental Medicine
M.V. Lomonosov Moscow State University
Moscow, Russian Federation
Chapter 5

Gregg L. Semenza
Vascular Program
Institute for Cell Engineering
Departments of Pediatrics, Medicine, Oncology, Radiation Oncology
McKusick-Nathans Institute of Genetic Medicine
Johns Hopkins University School of Medicine
Baltimore, Maryland, USA
Chapter 18
Valery B. Shatilo
Institute of Gerontology
Academy of Medical Sciences
Kiev, Ukraine
Chapter 28

Tsering Stobdan
Institute of Genomics and Integrative Biology
Delhi, India
Chapter 19

Demet Tekin
Department of Physiology
University of Ankara School of Medicine
Ankara, Turkey;
Miami Institute for Human Genomics
University of Miami
Miami, Florida, USA
Chapter 3, Chapter 8

Elena N. Tkatchouk
Clinical Research Laboratory
Hypoxia Medical Academy
Moscow, Russian Federation
Chapter 20

Maya I. Tourta
Institute of Gerontology
Academy of Medical Sciences
Kiev, Ukraine
Chapter 28

Tatyana A. Tsybina
Institute of General Pathology and
Pathophysiology
Russian Academy of Medical Science
Moscow, Russian Federation
Chapter 20

Anatoly F. Vanin
Institute of Chemical Physics
Moscow, Russian Federation
Chapter 4

Arsenio Veicsteinas
Institute of Physical Exercise, Health and Sport Activities, Center of Sport Medicine
Don Gnocchi Foundation
Milan, Italy
Chapter 2

Jong-Shyan Wang
Graduate Institute of Rehabilitation Science
Center for Healthy Aging Research
Chang Gung University
Tao-Yuan, Taiwan, R.O.C.
Chapter 25

Xiao-Ming Wang
Department of Physiology
Capital Medical University
Beijing, China
Chapter 16

Xuan Wang
Department of Physiology
Capital Medical University
Beijing, China
Chapter 16

Xavier Woorons
Laboratory of “Réponses cellulaires et fonctionnelles à l’hypoxie”
EA2363, ARPE
University Paris 13
Bobigny, France
Chapter 23

Ling-Ling Zhu
Department of Brain Protection and Plasticity
Institute of Basic Medical Science
Beijing, China
Chapter 16

Jan Zieliński
Institute of Tuberculosis and Lung Diseases
Warsaw, Poland
Chapter 14
PREFACE

“Science and men of science are cosmopolitans, and it seems hardly important whether a scientific truth develops at any particular spot on the globe, as long as the general diffusion of science allows all men to share in it.”

Claude Bernard
(French physiologist, 1813-1878)

As inspired by the above-quoted wisdom of Claude Bernard (1813-1878), this book has gathered a tremendous global effort of 74 prominent experts from 17 countries in Asia, Europe, North America, and Oceana, focusing on the single subject – intermittent hypoxia. To our best knowledge, this is the very first and most comprehensive book (in English language) dedicated to a variety of topics on intermittent hypoxia. As the readers may extract from the Table of Contents, the 30 chapters are divided into 6 sections ranging from molecular aspects to merely clinical applications. We truly wish that this monograph could provide many valuable information to all interested scientists, researchers, sports coaches, trainers, and clinicians as well as medical and graduate students on the updated scientific basis and therapeutic regimens of intermittent hypoxia for utilizing its beneficial effects and preventing or reducing its detrimental effects. It is even more important and valuable that many contents of this book are not available or easily accessible in any of the peer-reviewed periodicals. This is mainly due to the fact that many innovative investigations and advanced applications in the field of intermittent hypoxia were originated in the former Soviet Union countries, which were severely underrepresented in the biomedical literatures in English language (also see our chapter on Historical Overview of Intermittent Hypoxia Research). One of our primary goals for this book is to provide a unified and unbiased forum for both the most renowned authorities in USA and the relatively less well-known but highly experienced investigators from a number of non-English speaking countries. We attempted to assist these groups of researchers to overcome their language barriers for effectively communicating their novel findings. This effort has proved to be rewarding as well as very time-consuming due to the excessive editing workload. We have tried our best to put the work quality first even at the cost of consequently postponing the publication timetable for several months.

In spite of our extensive efforts, the readers may still find many important research topics or clinical applications related to intermittent hypoxia that are not covered in this book. For instance, the studies on effects of intermittent hypoxia on tumor genesis and growth and the therapeutic applications of intermittent hypoxia training to treat bronchial asthma, chronic obstructive pulmonary diseases, industrial pneumoconiosis, and gynecological diseases are not included. The effects of intermittent hypoxia on the pathogenesis and prognosis of diabetes, metabolic syndrome, and heart failure should also be of great interests in current clinical practice around the world. We therefore hope that these additional topics will be thoroughly discussed in the second edition of our book.

Finally we like to present a condensed list of acknowledgements. We first want to express our sincerest appreciation to each of the 74 contributing authors for spending their precious time to
write the outstanding chapters, which present the key value of this book. Indeed, it has been a scientifically challenging and culturally fulfilling process for us as editors to have the opportunity to interact with these distinguished scholars. We are truly honored for having a Foreword written by Prof. John B. West (University of California at San Diego, USA), one of the world-class authorities in Respiratory Physiology and Hypoxia Medicine. Many thanks to the management team and staff of Nova Science Publishers (particularly Mr. Frank Columbus, Ms. Maya Columbus, Mr. Michael Knespler, and Ms. Stephanie Gonzalez) for their encouragement, support, and extraordinary patience throughout the planning and publication process.

We also like to individually thank our academic mentors who inspired and promoted our careers. [From Lei Xi]: I like to dedicate this book to my three mentors - Prof. Paolo Cerretelli (University of Geneva, Switzerland), Prof. Jerome A. Dempsey (University of Wisconsin at Madison, USA), and Prof. Rakesh C. Kukreja (Virginia Commonwealth University, USA), who had guided me at the different stages of my academic career and made crucial impact on the formation and maintaining of my profound interests in Hypoxia Physiology and Pathophysiology since 1980s. [From Tatiana V. Serebrovskaya]: I want to dedicate this book also to three outstanding personalities who played fundamental roles in formation of my Weltanschauung and scientific knowledge. There are Prof. Platon Kostyuk and Prof. Philipp Serkov (Bogomoletz Institute of Physiology, Ukraine), my unsurpassed teachers in General Physiology, and the late Prof. John (Jack) Reeves (University of Colorado at Denver, USA) who gave me indelible lessons of selfless service to Hypoxia Science and true love to the people.

At last, we are indebted to our beloved families for tolerating the countless long hours we spent at office and home for writing and editing the book contents throughout the past two years. Without their sacrifice and moral support this book could not be completed.

Lei Xi, M.D.
Assistant Professor of Medicine
Division of Cardiology
Department of Internal Medicine
Virginia Commonwealth University
Richmond, Virginia 23098-0204, USA

Tatiana V. Serebrovskaya, Ph.D., D.Sc.
Academician of International Academy of Science
Principal Researcher
Bogomoletz Institute of Physiology
National Academy of Sciences
Kiev 01601, Ukraine
FOREWORD

It is a pleasure and a privilege to provide a foreword for this book devoted to intermittent hypoxia. This is a topic that has attracted a great deal of attention in the last few years although its origins go back much further. An important feature of the subject is that it covers a very broad area including such diverse topics as lowlanders commuting to high altitude, training for athletic competitions, and potential applications in the prevention and treatment of a number of diseases. These subjects have been discussed in a variety of journals and professional meetings, and it is timely to have a compendium of in a single volume. Lei Xi and Tatiana Serebrovskaya can be congratulated on having the foresight to assemble 74 contributors for this first comprehensive book on the subject.

Of course humans have been intermittently exposed to hypoxia from time immemorial when travelers crossed high passes on route to some distant destination. We are reminded of the colorful reference to Acute Mountain Sickness in the classical Chinese history of the period preceding the Han Dynasty, the Ch’ien Han Shu, dating from about 30 BC. Here there is a reference to the Great Headache Mountain and the Little Headache Mountain which were reported to cause headache, vomiting, and other distressful symptoms. Subsequent ascents to high altitude such as those by Joseph de Acosta in Peru in the 16th century confirmed these problems, and they were magnified during the exploits of the early balloonists in the late 18th century, culminating in the tragic death of two balloonists in the French balloon Zenith in 1875.

However these periods of exposure to severe hypoxia were somewhat random in nature and the term “intermittent hypoxia” has come to refer more to planned repetitive events. My interest in intermittent hypoxia was first stimulated by the development of the commuting pattern of miners from sea level where they lived to mines as high as 4500 m in North Chile. This practice was introduced some 30 or so years ago, and in a typical operation such as in the Collahuasi mine, several thousand workers have taken part in this commuting pattern. Their home is at Iquique on the Chilean coast and they are bused up to the mine in a few hours where they spend the next 7 days working 12-hour shifts at altitudes of up to 4500 m, although the sleeping quarters are at the somewhat lower altitude of 3800 m. At the end of the week they return to their families at sea level for a further week. Studies of the physiology of this group show that they develop a sort of intermediate acclimatization between sea level and 4500 m.

Another group of workers who are exposed to intermittent hypoxia are astronomers who operate telescopes as high as 5050 m, also in North Chile. It is true that their exposure is not as regular as that described for the miners, but the altitude is appreciably higher. An important innovation for this group is oxygen enrichment of the room air at the telescope site because there is convincing evidence of neuropsychological impairment at this altitude. Another site with a number of telescopes is Mauna Kea in Hawaii where the summit is at about 4200 m. Interestingly however, although oxygen enrichment of room air would clearly be advantageous to improve neuropsychological function at this altitude, there has been considerable reluctance to take advantage of it.

Another extensive application of intermittent hypoxia has been in training for athletic events at sea level. There seems to be no doubt that the “sleep high-train low” regime is beneficial to some athletes, particularly as in this competitive environment a fraction of a second or so can mean the difference between a gold and silver medal. However interestingly, there still seems to be uncertainty about the precise regime that gives the most beneficial results, and also there are apparently substantial differences between individual responses. This is an area where a great deal of time and money is being spent in trying to elucidate the physiological mechanisms and to implement the most advantageous mode.
Finally there has been a great deal of research on the potential value of intermittent hypoxia in the prevention or treatment of some diseases. Much of this work was carried out in the Soviet Union before people in Western Europe and North America became interested in intermittent hypoxia. In fact one of the earliest proponents of intermittent hypoxia was Nikolai Sirotinin (1896-1977) who did much of his work in the Bogomoletz Institute of Physiology in Kiev. Sirotinin was one of the first people to describe “cross-adaptation,” that is the fact that adaptation to one particular physiologic stress, for example the hypoxia of high altitude, would improve tolerance to a different kind of physiologic stress, for example exposure to high acceleration. This area remains controversial, and indeed some of the claims from the use of intermittent hypoxia in the treatment and prevention of disease seems exaggerated to some Western scientists. Perhaps there is something of a cultural divide in this area. Nevertheless it is clear that in some instances, intermittent hypoxia does have value in the prevention and treatment of disease and further research of this area has a high priority.

It only remains for me to congratulate Lei Xi and Tatiana Serebrovskaya for their enterprise in putting together such a timely volume. I am sure it will make an important contribution.

John B. West, M.D., Ph.D., D.Sc., F.R.A.C.P., F.R.C.P.
Member, Institute of Medicine, National Academy of Sciences of the United States of America
Foreign Member, Russian Academy of Sciences
Fellow, American Academy of Arts and Sciences
Fellow, American Association for the Advancement of Science
Distinguished Professor of Medicine and Physiology
University of California at San Diego, School of Medicine
San Diego, CA 92093-0623, USA
Intermittent hypoxia-induced upregulation of nuclear factor kappa B (NF-κB), the master transcriptional switch of inflammation, has been demonstrated in a variety of cells and tissues—leukocytes, vascular cells, fat cells, cardiovascular tissue, and liver tissue, with increased production of inflammatory gene products downstream of activation of NF-κB, such as tumor necrosis factor alpha (TNF-α), interleukin. Use of Intermittent Hypoxic Exposure (IHE) is relatively new in the west, but the USSR (and later CIS) has been researching and using IHE since the 1930's. Usage includes sports, altitude acclimatization, and treatment of clinical disorders, including chronic lung diseases, bronchial asthma, hypertension, diabetes mellitus, Parkinson's disease, emotional disorders, and even radiation toxicity. "Intermittent hypoxia" is characteristic of obstructive sleep apnoea syndrome (OSAS), where HIF-1 activation is stimulated by many short cycles of severe hypoxia lasting 15-30 s and longer periods of reoxygenation. However, during "cyclical hypoxia", HIFs accumulate strictly during longer periods of moderate hypoxia (since 12 h), followed by identical reoxygenation periods [14].