

63. Temperature-dependent Gap Anisotropy in Bi\textsubscript{2}Sr\textsubscript{2}CaCu\textsubscript{2}O\textsubscript{8+x} as Evidence for a Mixed-symmetry Ground State (with J. Betouras), Europhys. Lett. \textbf{31}, 119 (1995)
64. Phase Diagram of UP\textsubscript{3} in the E\textsubscript{1g} model (with K. Park), Phys. Rev. Lett. \textbf{74}, 4734 (1995)
65. Theoretical Study of the Critical Current of YBa\textsubscript{2}Cu\textsubscript{3}O\textsubscript{7-\delta} Bicrystals with Oxygen-deficient Grain Boundaries (with J. Betouras), Physica C \textbf{250}, 256 (1995)
68. Phase Diagram of Superconducting UP\textsubscript{3} in the E\textsubscript{1g} model (with K. Park), Phys. Rev. B \textbf{53}, 12346 (1996)
72. Material-Specific Calculations of Gap Symmetry in High-T\textsubscript{c} Superconductors (with B. Koltenbah), Repts. Prog. in Phys. \textbf{60}, 23 (1997)
78. Analysis and Experimental Evidence of s+d Ordering in High-T\textsubscript{c} Superconductors (with J. Betouras), Physica C: Superconductivity \textbf{317-318}, 669 (1999)
85. Theory of the Transition at 0.2 K in Ni-Doped Bi₂Sr₂CaCu₂O₈+x Phys. Rev. Lett. 84, 3954 (2000)
90. The Superconducting Phases of UPt₃ (with L. Taillefer), Rev. Mod. Phys. 74, 235 (2002)

110. “Spectroscopy of valley splitting in a Si/SiGe two-dimensional electron gas”, S. Goswami, J.L. Truitt et al., submitted, 2006

BOOKS EDITED:

PATENTS:

Solid-state physics is the study of rigid matter, or solids, through methods such as quantum mechanics, crystallography, electromagnetism, and metallurgy. It is the largest branch of condensed matter physics. Solid-state physics studies how the large-scale properties of solid materials result from their atomic-scale properties. Thus, solid-state physics forms a theoretical basis of materials science. It also has direct applications, for example in the technology of transistors and semiconductors. Now updated—the leading single-volume introduction to solid state and soft condensed matter physics. This Second Edition of the unified treatment of condensed matter physics keeps the best of the first, providing a basic foundation in the subject while addressing many recent discoveries. He specializes in the mechanics of solids, particularly the fracture of brittle materials. Dr. Marder has carried out experimental studies of crack instabilities in plastics and rubber, and constructed analytical theories for how cracks move in crystals. Recently he has studied the way that membranes ripple due to changes in their geometry, and properties of frictional sliding at small length scales. 16.4 Semiclassical Equations from Wave Packets 465. 16.4.1 Formal Dynamics of Wave Packets 465. Advanced embedding details, examples, and help! favorite. share. "Advances in research and applications." Imprint varies. Chemical abstracts. Vols. 1-10, in v. 11; Vols. 1-27, 1955-72, in v. 27; Author index: Vols. 1-20, in v. 21; Subject index: Vols. 1-20, in v. 21; Vols. 1-51, 1955-99, in v. 53. Editors: v. 1- F. Seitz and D. Turnbull. Boxid. IA108209.